基于Ollivier-Ricci曲率的图扩散节点分类算法
为解决图扩散方法在处理复杂边关系时精度降低的局限性,提出了一种基于曲率的图扩散神经网络。首先,引入Ollivier-Ricci曲率量化图的边曲率,提供关于图结构的几何度量;其次,运用曲率调整随机转移矩阵的权重,根据几何关系进行相应的权重修改;最后,将处理后的曲率矩阵与图扩散矩阵结合,更新权重系数进行模型训练。实验结果表明,与传统的图扩散方法相比,改良后的方法保持了有效地平滑图信号和减少高频噪声的优点,并在不同边和节点数量的数据集上将精度提高0.3~2.0百分点。该方法通过优化图扩散的消息聚合,能够更有效地利用图结构中的节点信息和边权重,从而提升节点分类任务中的模型性能,为未来基于图方法的研究提供了更可靠的方法与实验。
计算机应用研究
2025年01期
立即查看 >
图书推荐
相关工具书