为了充分利用电压源控制静止同步补偿器(voltagesourcecontrolledstaticsynchronouscompensator, VSCSTATCOM)IGBT开路故障电流信号中包含的时频信息,以提高IGBT故障诊断和识别的准确性,提出了一种基于小波散射变换(wavelet scattering transform, WST)与改进残差通道注意力(improved residual channel attention, IRCA)模块、改进坐标注意力(improved coordinate attention, ICA)模块和残差神经网络(residual neural network, Resnet)相结合的新算法—WST-IRCA-ICA-Res。首先,运用Matlab/Simulink平台仿真不同工况下VSC-STATCOM模块22类故障类型,获取故障样本集。其次,利用WST对故障信号进行自动鲁棒的特征提取,构建包含时频信息的特征矩阵。最后,利用IRCA-ICA-Res模型对特征矩阵进行深层次提取、强化和识别。实验结果表明,所提方法具有较强的抗噪性能,能够高精度识别IGBT故障类型。