针对多环配电网的拓扑辨识问题,考虑到量测信息可能部分缺失的情况,提出了基于深度神经网络融合欧氏距离的多环配电网拓扑辨识方法。首先,分析了传统拓扑辨识中相关性判断法应用于环状配电网的局限性,在此基础上提出基于欧氏距离的拓扑辨识判据。然后,针对量测信息缺失时的多环拓扑辨识问题,研究了利用深度神经网络融合欧氏距离判据的拓扑辨识方法。最后,在Matlab中利用MatPower搭建32节点“蜂巢”电网模型,在缺失不同比例的量测数据情况下验证方法的准确性。结果表明,当缺失大量量测数据时,所提方法仍有较高的拓扑辨识准确率。